Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
JAMA ; 331(7): 601-610, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38497695

ABSTRACT

Importance: Paroxysmal supraventricular tachycardia (PSVT), defined as tachyarrhythmias that originate from or conduct through the atria or atrioventricular node with abrupt onset, affects 168 to 332 per 100 000 individuals. Untreated PSVT is associated with adverse outcomes including high symptom burden and tachycardia-mediated cardiomyopathy. Observations: Approximately 50% of patients with PSVT are aged 45 to 64 years and 67.5% are female. Most common symptoms include palpitations (86%), chest discomfort (47%), and dyspnea (38%). Patients may rarely develop tachycardia-mediated cardiomyopathy (1%) due to PSVT. Diagnosis is made on electrocardiogram during an arrhythmic event or using ambulatory monitoring. First-line acute therapy for hemodynamically stable patients includes vagal maneuvers such as the modified Valsalva maneuver (43% effective) and intravenous adenosine (91% effective). Emergent cardioversion is recommended for patients who are hemodynamically unstable. Catheter ablation is safe, highly effective, and recommended as first-line therapy to prevent recurrence of PSVT. Meta-analysis of observational studies shows single catheter ablation procedure success rates of 94.3% to 98.5%. Evidence is limited for the effectiveness of long-term pharmacotherapy to prevent PSVT. Nonetheless, guidelines recommend therapies including calcium channel blockers, ß-blockers, and antiarrhythmic agents as management options. Conclusion and Relevance: Paroxysmal SVT affects both adult and pediatric populations and is generally a benign condition. Catheter ablation is the most effective therapy to prevent recurrent PSVT. Pharmacotherapy is an important component of acute and long-term management of PSVT.


Subject(s)
Tachycardia, Ventricular , Adult , Child , Female , Humans , Male , Adenosine/administration & dosage , Adenosine/therapeutic use , Administration, Intravenous , Anti-Arrhythmia Agents/administration & dosage , Anti-Arrhythmia Agents/therapeutic use , Cardiomyopathies/etiology , Tachycardia, Ventricular/complications , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/therapy , Catheter Ablation , Electrocardiography , Valsalva Maneuver , Electric Countershock
2.
Front Plant Sci ; 14: 1120435, 2023.
Article in English | MEDLINE | ID: mdl-37575917

ABSTRACT

In the Canadian prairies, pulse crops such as field pea (Pisum sativum L.) and lentil (Lens culinaris L.) are economically important and widely grown. However, in recent years, root rot, caused by a variety of fungal and oomycete pathogens, including Aphanomyces euteiches, has become a limiting factor on yield. In this study, we examined the impacts of nitrogen (N) fertilization and a commercial arbuscular mycorrhizal fungal (AMF) inoculant on pea and lentil plant health and agronomic production at three locations in Saskatchewan: Swift Current, Indian Head and Melfort. The AMF inoculation had no impact on root rot severity, and therefore is not considered a reliable method to manage root rot in pea and lentil. In contrast, N fertilization led to reductions in root rot in Swift Current, but not the other two sites. However, N fertilization did reduce nodulation. When both pea and lentil are considered, the abundance of A. euteiches in soil increased from pre-seeding to mid-bloom. A negative correlation between soil pH and disease severity was also observed. The high between-site variability highlights the importance of testing root rot mitigation strategies under multiple soil conditions to develop site-specific recommendations. Use of N fertilizer as a root rot management strategy merits further exploration, including investigation into its interactions with other management strategies, soil properties, and costs and benefits.

3.
Plants (Basel) ; 12(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36840074

ABSTRACT

Genetic resistance is a cornerstone for managing clubroot (Plasmodiophora brassicae). However, when used repeatedly, a clubroot resistance (CR) gene can be broken rapidly. In this study, canola inbred/hybrid lines carrying one or two CR genes (Rcr1/CRaM and Crr1rutb) were assessed against P. brassicae pathotype X by repeated exposure to the same inoculum source under a controlled environment. Lines carrying two CR genes, either Rcr1 + Crr1rutb or CRaM + Crr1rutb, showed partial resistance. Selected lines were inoculated with a field pathotype X population (L-G3) at 5 × 106 resting spores/g soil, and all clubs were returned to the soil they came from six weeks after inoculation. The planting was repeated for five cycles, with diseased roots being returned to the soil after each cycle. The soil inoculum was quantified using qPCR before each planting cycle. All lines with a single CR gene were consistently susceptible, maintaining high soil inoculum levels over time. The lines carrying two CR genes showed much lower clubroot severity, resulting in a 10-fold decline in soil inoculum. These results showed that the CR-gene stacking provided moderate resistance against P. brassicae pathotype X, which may also help reduce the pathogen inoculum buildup in soil.

4.
BMC Plant Biol ; 23(1): 24, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36631796

ABSTRACT

BACKGROUND: Ubc13 is the only known ubiquitin conjugating enzyme (Ubc/E2) dedicated to promoting Lys (K)63-linked polyubiquitination, and this process requires a Ubc/E2 variant (UEV). Unlike conventional K48-linked polyubiquitination that targets proteins for degradation, K63-linked polyubiquitination, which is involved in several cellular processes, does not target proteins for degradation but alter their activities. RESULTS: In this study we report the identification and functional characterization of 12 Brassica napus UBC13 genes. All the cloned UBC13 gene products were able to physically interact with AtUev1D, an Arabidopsis UEV, to form stable complexes that are capable of catalyzing K63-linked polyubiquitination in vitro. Furthermore, BnUBC13 genes functionally complemented the yeast ubc13 null mutant defects in spontaneous mutagenesis and DNA-damage responses, suggesting that BnUBC13s can replace yeast UBC13 in mediating K63-linked polyubiquitination and error-free DNA-damage tolerance. CONCLUSION: Collectively, this study provides convincing data to support notions that B. napus Ubc13s promote K63-linked polyubiquitination and are probably required for abiotic stress response. Since plant Ubc13-UEV are also implicated in other developmental and stress responses, this systematic study sets a milestone in exploring roles of K63-linked polyubiquitination in this agriculturally important crop.


Subject(s)
Brassica napus , DNA Damage , Ubiquitin-Conjugating Enzymes , Amino Acid Sequence , Arabidopsis/genetics , Brassica napus/enzymology , Brassica napus/genetics , Saccharomyces cerevisiae/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination
5.
Front Physiol ; 13: 903050, 2022.
Article in English | MEDLINE | ID: mdl-35957984

ABSTRACT

ML277 and R-L3 are two small-molecule activators of KCNQ1, the pore-forming subunit of the slowly activating potassium channel IKs. KCNQ1 loss-of-function mutations prolong cardiac action potential duration and are associated with long QT syndrome, which predispose patients to lethal ventricular arrhythmia. ML277 and R-L3 enhance KCNQ1 current amplitude and slow deactivation. However, the presence of KCNE1, an auxiliary subunit of IKs channels, renders the channel insensitive to both activators. We found that ML277 effects are dependent on several residues in the KCNQ1 pore domain. Some of these residues are also necessary for R-L3 effects. These residues form a putative hydrophobic pocket located between two adjacent KCNQ1 subunits, where KCNE1 subunits are thought to dwell, thus providing an explanation for how KCNE1 renders the IKs channel insensitive to these activators. Our experiments showed that the effect of R-L3 on voltage sensor movement during channel deactivation was much more prominent than that of ML277. Simulations using a KCNQ1 kinetic model showed that the effects of ML277 and R-L3 could be reproduced through two different effects on channel gating: ML277 enhances KCNQ1 channel function through a pore-dependent and voltage sensor-independent mechanism, while R-L3 affects both channel pore and voltage sensor.

6.
J Genet Genomics ; 48(11): 994-1006, 2021 11 20.
Article in English | MEDLINE | ID: mdl-34702671

ABSTRACT

Leptosphaeria maculans is a serious concern for canola production worldwide. For effective disease management, knowledge of the pathogen's genetic variability and population structure is a prerequisite. In this study, whole-genome sequencing was performed for 162 of 1590 L. maculans isolates collected in the years 2007-2008 and 2012-2014 in Western Canada. DNA variants in genome-wide and specific regions including avirulence (Avr) genes were characterized. A total of 31,870 high-quality polymorphic DNA variants were used to study L. maculans genetic diversity and population structure. Cluster analysis showed that 150 isolates were clustered into 2 main groups and 4 subgroups by DNA variants located in either Avr or small secreted protein-encoding genes and into 2 main groups and 6 subgroups by genome-wide variants. The analysis of nucleotide diversity and differentiation also confirmed genetic variation within a population and among populations. Principal component analysis with genome-wide variants showed that the isolates collected in 2012-2014 were more genetically diverse than those collected in 2007-2008. Population structure analysis discovered three distinct sub-populations. Although isolates from Saskatchewan and Alberta were of similar genetic composition, Manitoba isolates were highly diverse. Genome-wide association study detected DNA variants in genes AvrLm4-7, Lema_T86300, and Lema_T86310 associated with the years of collection.


Subject(s)
Genetic Variation , Genome, Fungal , Genomics , Leptosphaeria/classification , Leptosphaeria/genetics , Canada , Genomics/methods , Leptosphaeria/isolation & purification , Mutation , Phylogeny , Phylogeography , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Whole Genome Sequencing
7.
Heliyon ; 7(10): e08142, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34693062

ABSTRACT

Soil microbial communities play a crucial role in soil fertility, sustainability, and plant health. However, intensive agriculture with increasing chemical inputs and changing environments have influenced native soil microbial communities. Approaches have been developed to study the structure, diversity, and activity of soil microbes to better understand the biology and plant-microbe interactions in soils. Unfortunately, a good understanding of soil microbial community remains a challenge due to the complexity of community composition, interactions of the soil environment, and limitations of technologies, especially related to the functionality of some taxa rarely detected using conventional techniques. Culture-based methods have been shown unable and sometimes are biased for assessing soil microbial communities. To gain further knowledge, culture-independent methods relying on direct analysis of nucleic acids, proteins, and lipids are worth exploring. In recent years, metagenomics, metaproteomics, metatranscriptomics, and proteogenomics have been increasingly used in studying microbial ecology. In this review, we examined the importance of microbial community to soil quality, the mystery of rhizosphere and plant-microbe interactions, and the biodiversity and multi-trophic interactions that influence the soil structure and functionality. The impact of the cropping system and climate change on the soil microbial community was also explored. Importantly, progresses in molecular biology, especially in the development of high-throughput biotechnological tools, were extensively assessed for potential uses to decipher the diversity and dynamics of soil microbial communities, with the highlighted advantages/limitations.

9.
Heart Rhythm O2 ; 2(3): 255-261, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34337576

ABSTRACT

BACKGROUND: Patients with typical atrial flutter (AFL) undergoing successful cavotricuspid isthmus ablation remain at risk for future development of new-onset atrial fibrillation (AF). Conventional monitoring (CM) techniques have shown AF incidence rates of 18%-50% in these patients. OBJECTIVES: To evaluate whether continuous monitoring using implantable loop recorders (ILRs) would enhance AF detection in this patient population. METHODS: Veteran patients undergoing AFL ablation between 2002 and 2019 who completed at least 6 months of follow-up after the ablation procedure were included. We compared new-onset AF detection between those who underwent CM and those who received ILRs immediately following AFL ablation. RESULTS: A total of 217 patients (age: 66 ± 9 years; all male) participated. CM was used in 172 (79%) and ILR in 45 (21%) patients. Median follow-up duration after ablation was 4.1 years. Seventy-nine patients (36%) developed new-onset AF, which was detected by CM in 51 and ILR in 28 (30% vs 62%, respectively, P < .001). AF detection occurred at 7.7 months (IQR: 4.7-17.5) after AFL ablation in the ILR group vs 41 months (IQR: 23-72) in the CM group (P < .001). Eleven patients (5%) experienced cerebrovascular events (all in the CM group) and only 4 of these patients (36%) were on long-term anticoagulation. CONCLUSION: Patients undergoing AFL ablation remain at an increased risk of developing new-onset AF, which is detected sooner and more frequently by ILR than by CM. Improving AF detection may allow optimization of rhythm management strategies and anticoagulation in this patient population.

10.
Front Plant Sci ; 12: 669997, 2021.
Article in English | MEDLINE | ID: mdl-34177985

ABSTRACT

Blackleg, caused by the fungal pathogen Leptosphaeria maculans, is a serious threat to canola (Brassica napus L.) production in western Canada. Crop scouting and extended crop rotation, along with the use of effective genetic resistance, have been key management practices available to mitigate the impact of the disease. In recent years, new pathogen races have reduced the effectiveness of some of the resistant cultivars deployed. Strategic deployment and rotation of major resistance (R) genes in cultivars have been used in France and Australia to help increase the longevity of blackleg resistance. Canada also introduced a grouping system in 2017 to identify blackleg R genes in canola cultivars. The main objective of this study was to examine and validate the concept of R gene deployment through monitoring the avirulence (Avr) profile of L. maculans population and disease levels in commercial canola fields within the Canadian prairies. Blackleg disease incidence and severity was collected from 146 cultivars from 53 sites across Manitoba, Saskatchewan, and Alberta in 2018 and 2019, and the results varied significantly between gene groups, which is likely influenced by the pathogen population. Isolates collected from spring and fall stubble residues were examined for the presence of Avr alleles AvrLm1, AvrLm2, AvrLm3, AvrLm4, AvrLm5, AvrLm6, AvrLm7, AvrLm9, AvrLm10, AvrLm11, AvrLepR1, AvrLepR2, AvrLep3, and AvrLmS using a set of differential host genotypes carrying known resistance genes or PCR-based markers. The Simpson's evenness index was very low, due to two dominant L. maculans races (AvrLm2-4-5-6-7-10-11 and AvrLm2-5-6-7-10-11) representing 49% of the population, but diversity of the population was high from the 35 L. maculans races isolated in Manitoba. AvrLm6 and AvrLm11 were found in all 254 L. maculans isolates collected in Manitoba. Knowledge of the blackleg disease levels in relation to the R genes deployed, along with the L. maculans Avr profile, helps to measure the effectiveness of genetic resistance.

11.
Plant Cell ; 33(9): 3151-3175, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34181022

ABSTRACT

The actin cytoskeleton regulates an array of diverse cellular activities that support the establishment of plant-microbe interactions and plays a critical role in the execution of plant immunity. However, molecular and cellular mechanisms regulating the assembly and rearrangement of actin filaments (AFs) at plant-pathogen interaction sites remain largely elusive. Here, using live-cell imaging, we show that one of the earliest cellular responses in Arabidopsis thaliana upon powdery mildew attack is the formation of patch-like AF structures beneath fungal invasion sites. The AFs constituting actin patches undergo rapid turnover, which is regulated by the actin-related protein (ARP)2/3 complex and its activator, the WAVE/SCAR regulatory complex (W/SRC). The focal accumulation of phosphatidylinositol-4,5-bisphosphate at fungal penetration sites appears to be a crucial upstream modulator of the W/SRC-ARP2/3 pathway-mediated actin patch formation. Knockout of W/SRC-ARP2/3 pathway subunits partially compromised penetration resistance with impaired endocytic recycling of the defense-associated t-SNARE protein PEN1 and its deposition into apoplastic papillae. Simultaneously knocking out ARP3 and knocking down the Class I formin (AtFH1) abolished actin patch formation, severely impaired the deposition of cell wall appositions, and promoted powdery mildew entry into host cells. Our results demonstrate that the ARP2/3 complex and formins, two actin-nucleating systems, act cooperatively and contribute to Arabidopsis penetration resistance to fungal invasion.


Subject(s)
Actin-Related Protein 2-3 Complex/genetics , Arabidopsis Proteins/genetics , Arabidopsis/immunology , Ascomycota/physiology , Formins/metabolism , Plant Diseases/immunology , Plant Immunity/genetics , Actin-Related Protein 2-3 Complex/metabolism , Arabidopsis/microbiology , Arabidopsis Proteins/metabolism , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
12.
Plant Dis ; 105(11): 3481-3489, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33881916

ABSTRACT

Fusarium head blight (FHB) is one of the most important diseases of durum, spring, and winter wheat in Canada. Growers rely on an integrated strategy to manage the disease, including fungicide application at the current recommendation of early to 50% anthesis (BBCH61-65). This study evaluated the effect of fungicide application timing and seeding rates of durum wheat on FHB. Field trials were carried out from 2016 to 2018 at three locations in Saskatchewan. Eight treatments of the metconazole fungicide Caramba were applied to durum seeded at 75 and 400 seeds m-2. The fungicide treatments consisted of a nontreated check, a treated check, and applications at BBCH59, BBCH61, BBCH65, BBCH69, and BBCH73 and a dual application treatment (BBCH61 followed by BBCH73). FHB index, proportion of Fusarium-damaged kernels (%FDK), deoxynivalenol (DON), grain protein content (GPC, %), and yield were evaluated. Seeding rates influenced all parameters. The high seeding rate had a higher yield and FHB index but lower DON and GPC than did the lower seeding rate. All fungicide treatments resulted in lower FHB index, DON, and %FDK than the nontreated check. Under FHB conducive conditions, all anthesis applications from BBCH61 to BBCH69 had a similar effect on FHB index, %FDK, DON, and yield, whereas in years with low disease severity, the application at BBCH65 had lower FHB index, %FDK, and DON relative to other single applications. The dual application (BBCH61 + 73) treatment resulted in similar FHB index levels, %FDK, and DON content as the BBCH65 application at all site years. Our results indicate that the window of fungicide application can be extended to the end of flowering when FHB risk is high.


Subject(s)
Fungicides, Industrial , Fusarium , Fungicides, Industrial/pharmacology , Plant Diseases , Saskatchewan , Triticum
13.
Sci Rep ; 11(1): 6599, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33758222

ABSTRACT

Genetic resistance is a successful strategy for management of clubroot (Plasmodiophora brassicae) of brassica crops, but resistance can break down quickly. Identification of novel sources of resistance is especially important when new pathotypes arise. In the current study, the reaction of 177 accessions of Brassica napus to four new, virulent pathotypes of P. brassicae was assessed. Each accession was genotyped using genotyping by sequencing to identify and map novel sources of clubroot resistance using mixed linear model (MLM) analysis. The majority of accessions were highly susceptible (70-100 DSI), but a few accessions exhibited strong resistance (0-20 DSI) to pathotypes 5X (21 accessions), 3A (8), 2B (7), and 3D (15), based on the Canadian Clubroot Differential system. In total, 301,753 SNPs were mapped to 19 chromosomes. Population structure analysis indicated that the 177 accessions belong to seven major populations. SNPs were associated with resistance to each pathotype using MLM. In total, 13 important SNP loci were identified, with 9 SNPs mapped to the A-genome and 4 to the C-genome. The SNPs were associated with resistance to pathotypes 5X (2 SNPs), 3A (4), 2B (5) and 3D (6). A Blast search of 1.6 Mb upstream and downstream from each SNP identified 13 disease-resistance genes or domains. The distance between a SNP locus and the nearest resistance gene ranged from 0.04 to 0.74 Mb. The resistant lines and SNP markers identified in this study can be used to breed for resistance to the most prevalent new pathotypes of P. brassicae in Canada.


Subject(s)
Brassica napus/genetics , Disease Resistance , Polymorphism, Single Nucleotide , Brassica napus/microbiology , Plasmodiophorida/pathogenicity , Quantitative Trait Loci
14.
Sci Rep ; 11(1): 4407, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33623070

ABSTRACT

Genetic resistance to blackleg (Leptosphaeria maculans, Lm) of canola (Brassica napus, Bn) has been extensively studied, but the mechanisms underlying the host-pathogen interaction are still not well understood. Here, a comparative transcriptome analysis was performed on a resistant doubled haploid Bn line carrying the resistance gene Rlm1 following inoculation with a virulent (avrLm1) or avirulent (AvrLm1) Lm isolate on cotyledons. A total of 6999 and 3015 differentially expressed genes (DEGs) were identified, respectively, in inoculated local tissues with compatible (susceptible) and incompatible (resistant) interactions. Functional enrichment analysis found several biological processes, including protein targeting to membrane, ribosome and negative regulation of programmed cell death, were over-represented exclusively among up-regulated DEGs in the resistant reaction, whereas significant enrichment of salicylic acid (SA) and jasmonic acid (JA) pathways observed for down-regulated DEGs occurred only in the susceptible reaction. A heat-map analysis showed that both biosynthesis and signaling of SA and JA were induced more significantly in the resistant reaction, implying that a threshold level of SA and JA signaling is required for the activation of Rlm1-mediated resistance. Co-expression network analysis revealed close correlation of a gene module with the resistance, involving DEGs regulating pathogen-associated molecular pattern recognition, JA signaling and transcriptional reprogramming. Substantially fewer DEGs were identified in mock-inoculated (control) cotyledons, relative to those in inoculated local tissues, including those involved in SA pathways potentially contributing to systemic acquired resistance (SAR). Pre-inoculation of cotyledon with either an avirulent or virulent Lm isolate, however, failed to induce SAR on remote tissues of same plant despite elevated SA and PR1 protein. This study provides insights into the molecular mechanism of Rlm1-mediated resistance to blackleg.


Subject(s)
Brassica napus/genetics , Disease Resistance , Leptosphaeria/pathogenicity , Transcriptome , Brassica napus/parasitology , Genes, Plant
15.
Plant Dis ; 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33630691

ABSTRACT

Chinese cabbage [Brassica rapa L. subsp. pekinensis (Lour.) Hanelt] is a major leafy vegetable crop grown in China and eastern Asia (Fordham and Hadley 2003). In December 2018, black leg symptoms were observed on of "Qingza No.3" of Chinese cabbage during harvest, Chibi (29°46'37.38''N, 114°05'6.88''E), Hubei, China. Symptoms were first noted in late Nov. as black spots on leaf petioles and basal stems. Then, black spots enlarged as oval or irregular-shaped grayish lesions. Finally, lesions enlarged and coalesced with black pycnidia were observed, and some diseased leaves became blighted. The disease incidence was about 80% in three fields surveyed (~2 ha in total). Diseased plant tissues were surface-sterilized, and incubated on potato dextrose agar (PDA) plates at 20°C for 4 days. Three fungal isolates, namely EP9-19, EP9-22 and EP9-26, were obtained from five of the diseased samples; all produced fluffy, white aerial mycelia and a yellow pigment on PDA. After 14 days, black-brown and globose pycnidia were produced, approximately 150 µm in diameter (n = 50). In addition, pink pycnidiospore ooze was observed on the top of pycnidium after 20-day culturing on a V8-juice (20%) agar. Conidia were cylindrical and hyaline, with the mean size of 4.6 × 2.7 µm (n = 50). Two fungal species have been reported to cause blackleg on Brassica crops (Williams and Fitt 1999), i.e. Leptosphaeria maculans and L. biglobosa. The former is much more destructive, but is not present in China. These isolates had morphological characteristics matching those of L. biglobosa (Williams and Fitt 1999). The genomic DNA of isolate EP9-22 was extracted and sequenced for its actin, ß-tubulin and the internal transcribed spacer (ITS) region of ribosomal DNA as described by Vincenot et al. (2008). Sequences of ITS (GenBank accession no. MN238766), actin (MN242213) and ß-tubulin (MN242214) for isolate EP9-22 showed 100%, 99.67%, and 97.93% identity to the corresponding regions of L. biglobosa 'brassicae' strain IBCN89 (Vincenot et al. 2008). In addition, the phylogenetic analysis also indicated that isolate EP9-22 belonged to L. biglobosa 'brassicae'. The pathogenicity test was performed according to established protocols (Balesdent et al., 2005). Cotyledons of the 15-day-old Chinese cabbage seedlings (cultivars Xiaoza No.55 and Hualiangzao No.5) were wound inoculated with 10 µl pycnidiospore suspension (1 × 107 conidia/ml) of the three isolates, with 20 cotyledons per isolate, respectively, and 20 cotyledons wound inoculated with sterile water served as a control group. The treated seedlings were maintained at 20°C and 100% relative humidity with a 12-h photoperiod. The experiment was repeated twice. At 7 days after inoculation, necrotic lesions became visible surrounding inoculation sites for the three isolates, while the control group remained healthy. Fungal isolates showing a similar colony morphology to the originals were re-isolated from ten diseased cotyledons but not from the control cotyledons. Based on these results, L. biglobosa 'brassicae' was shown to be the causal agent of blackleg on Chinese cabbage in China. We believe that this disease has historically often been misidentified as 'anthracnose' by local famers. The threat from L. biglobosa to the production of Chinese cabbage has been assessed. This accurate identification of the causal pathogen is a critical first step towards the development of disease management strategies.

16.
Front Plant Sci ; 12: 785989, 2021.
Article in English | MEDLINE | ID: mdl-35095960

ABSTRACT

Plasmodiophora brassicae causes clubroot disease in brassica crops worldwide. Brassica rapa, a progenitor of Brassica napus (canola), possesses important sources for resistance to clubroot. A doubled haploid (DH) population consisting of 84 DH lines were developed from a Backcross2 (BC2) plant through an interspecific cross of B. rapa turnip cv. ECD01 (resistant, R) with canola line DH16516 (susceptible, S) and then backcrossed with DH16516 as the recurrent parent. The DH lines and their parental lines were tested for resistance to four major pathotypes (3A, 3D, 3H, and 5X) of P. brassicae identified from canola. The R:S segregation ratio for pathotype 3A was 1:3, and 3:1 for pathotypes 3D, 3H, and 5X. From genotyping by sequencing (GBS), a total of 355.3 M short reads were obtained from the 84 DH lines, ranging from 0.81 to 11.67 M sequences per line. The short reads were aligned into the A-genome of B. napus "Darmor-bzh" version 4.1 with a total of 260 non-redundant single-nucleotide polymorphism (SNP) sites. Two quantitative trait loci (QTLs), Rcr10 ECD01 and Rcr9 ECD01 , were detected for the pathotypes in chromosomes A03 and A08, respectively. Rcr10 ECD01 and Rcr9 ECD01 were responsible for resistance to 3A, 3D, and 3H, while only one QTL, Rcr9 ECD01 , was responsible for resistance to pathotype 5X. The logarithm of the odds (LOD) values, phenotypic variation explained (PVE), additive (Add) values, and confidence interval (CI) from the estimated QTL position varied with QTL, with a range of 5.2-12.2 for LOD, 16.2-43.3% for PVE, 14.3-25.4 for Add, and 1.5-12.0 cM for CI. The presence of the QTLs on the chromosomes was confirmed through the identification of the percentage of polymorphic variants using bulked-segregant analysis. There was one gene encoding a disease resistance protein and 24 genes encoding proteins with function related to plant defense response in the Rcr10 ECD01 target region. In the Rcr9 ECD01 region, two genes encoded disease resistance proteins and 10 genes encoded with defense-related function. The target regions for Rcr10 ECD01 and Rcr9 ECD01 in B. napus were homologous to the 11.0-16.0 Mb interval of chromosome A03 and the 12.0-14.5 Mb interval of A08 in B. rapa "Chiifu" reference genome, respectively.

17.
Plant Dis ; 105(5): 1440-1447, 2021 May.
Article in English | MEDLINE | ID: mdl-33100150

ABSTRACT

Blackleg, caused by Leptosphaeria maculans, is a major disease of canola in Canada, Australia, and Europe. For effective deployment of resistant varieties and disease management, it is crucial to understand the population structure of L. maculans. In this study, we analyzed L. maculans isolates from commercial fields in western Canada from 2014 to 2016 for the presence and frequency of avirulence (Avr) genes. A total of 1,584 isolates were examined for the presence of Avr genes AvrLm1, AvrLm2, AvrLm3, AvrLm4, AvrLm6, AvrLm7, AvrLm9, AvrLepR1, AvrLepR2, and AvrLmS via a set of differential host genotypes carrying known resistance genes and a PCR assay. Several Avr genes showed a higher frequency in the pathogen population, such as AvrLm6 and AvrLm7, which were present in >90% of isolates, whereas AvrLm3, AvrLm9, and AvrLepR2 showed frequencies of <10%. A total of 189 races (different combinations of Avr genes) were detected, with Avr-2-4-6-7-S, Avr-1-4-6-7, and Avr-2-4-6-7 as the three predominant races. When the effect of crop rotation was assessed, only a 3-year rotation showed a significantly higher frequency of AvrLm2 relative to shorter rotations. This study provides the information for producers to select effective canola varieties for blackleg management and for breeders to deploy new R genes in disease resistance breeding in western Canada.


Subject(s)
Ascomycota , Ascomycota/genetics , Canada , Gene Frequency , Leptosphaeria , Plant Breeding , Plant Diseases
18.
Sci Rep ; 10(1): 21690, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33303778

ABSTRACT

Certain synthetic herbicides can act synergistically with specific bioherbicides. In this study, a sethoxydim herbicide at 0.1× label rate improved biocontrol of herbicide-sensitive green foxtail (Setaria viridis, GFT) by Pyricularia setariae (a fungal bioherbicide agent), but did not change the efficacy on a herbicide-resistant GFT biotype. Reference transcriptomes were constructed for both GFT biotypes via de novo assembly of RNA-seq data. GFT plants treated with herbicide alone, fungus alone and herbicide + fungus were compared for weed-control efficacy and differences in transcriptomes. On herbicide-sensitive GFT, sethoxydim at the reduced rate induced ABA-activated signaling pathways and a bZIP transcription factor 60 (TF bZIP60), while improved the efficacy of biocontrol. The herbicide treatment did not increase these activities or improve biocontrol efficacy on herbicide-resistant plants. An exogenous application of ABA to herbicide-sensitive plants also enhanced bZIP60 expression and improved biocontrol efficacy, which supported the results of transcriptome analysis that identified the involvement of ABA and bZIP60 in impaired plant defense against P. setariae. It is novel to use transcriptome analysis to decipher the molecular basis for synergy between a synthetic herbicide and a bioherbicide agent. A better understanding of the mechanism underlining the synergy may facilitate the development of weed biocontrol.


Subject(s)
Ascomycota/physiology , Biological Factors , Cyclohexanones/pharmacology , Drug Synergism , Herbicides/pharmacology , Setaria Plant/drug effects , Setaria Plant/genetics , Transcriptome/genetics , Weed Control/methods , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression/drug effects , Gene Expression Profiling/methods , Herbicide Resistance , RNA, Plant , Sequence Analysis, RNA , Setaria Plant/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics
19.
Int J Mol Sci ; 21(14)2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32708772

ABSTRACT

Genetic resistance is widely used to manage clubroot (Plasmodiophora brassicae) in brassica crops, but new pathotypes have recently been identified on canola (Brassica napus) on the Canadian prairies. Resistance effective against both the most prevalent pathotype (3H, based on the Canadian Clubroot Differential system) and the new pathotypes is needed. BC1 plants of Brassica rapa from a cross of line 96-6990-2 (clubroot resistance originating from turnip cultivar 'Waaslander') and a susceptible doubled-haploid line, ACDC, exhibited a 1:1 segregation for resistance against pathotypes 3H and 5X. A resistance gene designated as Rcr3 was mapped initially based on the percentage of polymorphic variants using bulked segregant RNA sequencing (BSR-Seq) and further mapped using Kompetitive Allele Specific PCR. DNA variants were identified by assembling short reads against a reference genome of B. rapa. Rcr3 was mapped into chromosome A08. It was flanked by single nucleotide polymorphisms (SNP) markers (A90_A08_SNP_M12 and M16) between 10.00 and 10.23 Mb, in an interval of 231.6 Kb. There were 32 genes in the Rcr3 interval. Three genes (Bra020951, Bra020974, and Bra020979) were annotated with disease resistance mechanisms, which are potential candidates for Rcr3. Another resistance gene, designated as Rcr9wa, for resistance to pathotype 5X was mapped, with the flanking markers (A90_A08_SNP_M28 and M79) between 10.85 and 11.17 Mb using the SNP sites identified through BSR-Seq for Rcr3. There were 44 genes in the Rcr9wa interval, three of which (Bra020827, Bra020828, Bra020814) were annotated as immune-system-process related genes, which are potential candidates for Rcr9wa.


Subject(s)
Brassica rapa/genetics , Plant Diseases/genetics , Plant Diseases/parasitology , Plasmodiophorida/physiology , Chromosome Mapping , Disease Resistance , Genes, Plant , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Sequence Analysis, RNA
20.
BMC Genomics ; 21(1): 501, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32693834

ABSTRACT

BACKGROUND: The fungal pathogen Leptosphaeria maculans (Lm). causes blackleg disease on canola/rapeseed in many parts of the world. It is important to use resistant cultivars to manage the disease and minimize yield losses. In this study, twenty-two Lm isolates were used to identify resistance genes in a collection of 243 canola/rapeseed (Brassica napus L.) accessions from Canada and China. These Lm isolates carry different compliments of avirulence genes, and the investigation was based on a genome-wide association study (GWAS) and genotype-by-sequencing (GBS). RESULTS: Using the CROP-SNP pipeline, a total of 81,471 variants, including 78,632 SNPs and 2839 InDels, were identified. The GWAS was performed using TASSEL 5.0 with GLM + Q model. Thirty-two and 13 SNPs were identified from the Canadian and Chinese accessions, respectively, tightly associated with blackleg resistance with P values < 1 × 10- 4. These SNP loci were distributed on chromosomes A03, A05, A08, A09, C01, C04, C05, and C07, with the majority of them on A08 followed by A09 and A03. The significant SNPs identified on A08 were all located in a 2010-kb region and associated with resistance to 12 of the 22 Lm isolates. Furthermore, 25 resistance gene analogues (RGAs) were identified in these regions, including two nucleotide binding site (NBS) domain proteins, fourteen RLKs, three RLPs and six TM-CCs. These RGAs can be the potential candidate genes for blackleg resistance. CONCLUSION: This study provides insights into potentially new genomic regions for discovery of additional blackleg resistance genes. The identified regions associated with blackleg resistance in the germplasm collection may also contribute directly to the development of canola varieties with novel resistance genes against blackleg of canola.


Subject(s)
Ascomycota , Brassica napus , Ascomycota/genetics , Brassica napus/genetics , Canada , China , Genome-Wide Association Study , Leptosphaeria , Plant Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...